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Emergence of scale-free networks from local connectivity and communication trade-offs
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We suggest a mechanism of connectivity evolution in networks to account for the emergence of scale-free
behavior. The mechanism works on a fixed set of nodes and promotes growth from a minimally connected
initial topology by the addition of edges. A new edge is added between two nodes depending on the trade-off
between a gain and a cost function of local connectivity and communication properties. We report on simula-
tion results that indicate the appearance of power-law distributions of node degrees for selected parameter

combinations.
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I. INTRODUCTION

The topology of large-scale complex networks such as the
Internet and the Worldwide Web (WWW) is, in general, not
known. The study of such networks has then relied on mod-
eling them as random graphs [1], and particularly on focus-
ing almost exclusively on the distribution of node degrees.
Unlike the classic case pioneered by Erdds and Rényi [2], for
the Internet, the WWW, and several other networks, it ap-
pears that degrees are distributed according to a power law,
not a Poisson distribution. That is, the probability that a ran-
domly chosen node has degree k is proportional to k77 in
general with 2<7<3 [3,4].

These findings are based on probe samplers in the case of
both the Internet [5] and the WWW [6], and are generally
regarded as reasonably accurate. However, part of the under-
lying machinery has been recently proven somewhat unreli-
able in the case of the Internet. For example, it has been
demonstrated experimentally that the usual mechanism of
inferring breadth-first-search trees from the probe results can
underestimate the value of 7 significantly when the graph
does have a power-law degree distribution [7]. Likewise, it is
possible to argue formally that such a mechanism can in
some cases lead to the conclusion of a power-law degree
distribution when in fact the graph’s degrees are distributed
in some other way [8].

In recent years, and notwithstanding these limitations,
considerable effort has been put into discovering mecha-
nisms of network growth that give rise to a power-law degree
distribution. Especially noteworthy is the mechanism of pref-
erential attachment, which underlies the so-called Barabasi-
Albert model [9,10], as well as variations [11-14] and gen-
eralizations [ 15] thereof. Preferential attachment is the policy
whereby a new edge is added to the network between a new
node and a preexisting one with probability proportional to
how many edges are already incident on the preexisting
node, that is, its current degree. The generalization of [15]
incorporates both this policy and also the copying mecha-
nism of [16]. We refer the reader to [17] for a review of the
essential mathematical results related to these models.

While the study of complex networks from the perspec-
tive of node-degree distributions seems sound and has given
rise to important discoveries related to global properties,
such as the nature and size of a network’s connected compo-
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nents and diameter [ 18], explaining the formation of the net-
work from the same perspective (e.g., by evoking preferen-
tial attachment) is unreasonable for at least two reasons. The
first is that the addition of a particular edge most definitely
does not depend on global properties such as the distribution
of node degrees at the time of expansion. The second reason
is that, at least for computer networks like the Internet, it
makes no sense to assume that the degree distribution, rather
than some cost- or performance-related entity, is the essential
driving force behind the evolution of the network’s topology.
Models that depend on node-degree distributions are then
adequate descriptive models, in the sense that they give rise
to the desired power-law functional form, but constitute poor
generative models. This has also been recognized elsewhere
from various perspectives (cf., e.g., [19-21]), and has almost
always resulted in the appearance of alternative models, such
as the ones in [22,23], that are also dependent on global
properties (like one-to-all distances) and therefore seem im-
plausible as well. One exception has been the copying model
of [16], which attempts to explain the growth of the WWW
by mixing random attachments with attachments that essen-
tially copy those of a randomly selected “prototype” node.
Another one is the model of [19], where each node is as-
signed a “fitness” that is local to it and then the decision on
whether to interconnect two nodes depends only on their
fitnesses. But this model is not quite realistic, since a node’s
fitness remains unchanged as new connections are attempted,
regardless of how many edges are already incident on it.
We work on the premise that networks such as the Inter-
net or the WWW, although fast growing, appear not to ac-
quire new nodes fast enough to impact their main topological
properties significantly. Thus the model that we study is tar-
geted at the evolution of the connectivity of computer net-
works, and promotes network growth on a fixed set of nodes
by incrementally adding edges between nodes as the result of
comparing a gain function and a cost function for each edge
addition. If i and j are nodes not currently connected by an
edge in the network, the gain incurred when adding an edge
between them depends only on the immediate neighborhoods
of i and j and on the current distance between i and j. The
cost of the addition, in turn, is also dependent solely upon i
and j and seeks to reflect both the cost of deploying the
communications link itself and the cost of upgrading nodes i
and j’s connection capabilities to accommodate the new link.
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The edge joining i and j is added to the network if the gain
surpasses the cost.

We point out, before proceeding to a detailed description
of our model, that it shares with the model of [24] both the
property of assuming a fixed set of nodes and the property of
having all decisions depend solely on locally available infor-
mation. On the other hand, that model operates also on a
fixed set of edges and targets only the rewiring of those
edges for the refinement of each node’s estimates of dis-
tances to all others. The two models are then substantially
distinct from each other: ours not only considers the addition
of edges but also relies, for its decisions, on quantities other
than mere distance estimates.

II. THE MODEL

We model the evolution of network connectivity as the
sequence G°,G',... of undirected graphs, all having the
same set of n nodes. We assume that G* is a tree that spans
all the nodes; G is therefore connected and has n—1 edges.
For =0, G"*! is obtained from G’ by randomly selecting two
nodes, say 7 and j, that are not directly connected by an edge,
and then adding an edge between them if the gain incurred
with the addition of the edge is greater than its cost. Other-
wise, we simply let G'**'=G'. All graphs in the sequence are
then guaranteed to be connected and to remain free of mul-
tiple edges and self-loops. We let dﬁj denote the distance
between i and j in G, and 7! the degree of node i in G'. We
also let Ni(j) be the set comprising every neighbor k of node
i in G' for which d;>2, and similarly N;; be the set of
unordered node pairs (k,) such that either k or [ is a neigh-
bor of i, the other node in the pair is a neighbor of j, and
furthermore d},> 3.

Let gﬁj denote the gain incurred with the addition of an
edge between i and j to G' when dfj> 1. In our model, we let
g ; be some upper bound on the number of edges by which
distances between certain nodes become shorter after the ad-
dition of that edge. The distances we consider to establish
this upper bound are some of those that involve i or j di-
rectly, or yet nodes in their immediate neighborhoods in G".
Specifically, we consider d;;, d;, for k e Ni(i) (neighbors of j
that are more than two edges away from i in G'), d;-k for
k e Ni(j) (neighbors of i that are more than two edges away
from j in G'), and finally d;, for (k,I) € Nj; (node pairs that
are more than three edges away from each other in G, one
being a neighbor of i, the other a neighbor of j).

Upper bounds on each distance in the latter three groups
are, clearly, d§j+ 1, d§j+ 1, and d§j+2, respectively. An upper
bound on the sum of all distances considered is then

diy+ (dy+ DINYD)| + (dig+ DING) + (dly+ 2)ING (1)

where we use |X| to denote the cardinality of set X. The
addition of an edge joining i and j causes the sum of all these
distances to become

2)

and consequently the overall number of edges by which the
distances become shorter is at most

1+ 2|Nj(0)| +2|Ni(j)] + 3N,
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One crucial aspect of the gain expressed in (3) is that, in
the context of computer networks, it depends exclusively on
information that can be obtained by tracing routes on G'.
This certainly holds for the determination of dfj, and holds
also for determining the sets Nj-(i), N(j), and ij, provided
only that the process of tracing routes is controlled for con-
stant depth. However, given the nature of routing algorithms
such as those of the Internet [25], tracing a route between i
and j on G' is only guaranteed to provide an upper bound on
dgj, which is nonetheless consonant with the expression in (3)
being itself an upper bound on total distance improvement.

Besides gﬁj, the decision regarding the addition of an edge
between i and j depends also on the cost of this addition. We
denote this cost by cfj and define it in such a way that both
the cost of deploying a communications link and the cost of
possibly upgrading the connection capabilities of i or j are
taken into account. The former of these we denote by C and
assume to be independent of ¢, i, and j.

As for the latter of the two cost components, we assume
that the number of connections a node can sustain at any
time is at most [@f] for some fixed a>1 and some
z€{0,1,...} that does not decrease as time elapses (we use
[x] to denote the least integer that is no less than x). If the
degree of i or j in G’ is precisely such a maximum number of
connections, then the cost of connecting i to j directly in-
volves the cost of upgrading the connection capabilities of i
or j, as the case may be, to [a**"], where w is the least integer
for which [a#™]>[a®]. We further assume, for some fixed
B> 1, that the cost of endowing the node with the capability
of connecting to [a] other nodes is proportional to 5.

Let n; denote the number of connections of some node k.
We model the scenario in which the cost incurred with the
upgrade of n from [&¢] to [a#*"] is proportional to S — B¢
(only the cost difference is paid) and is furthermore amor-
tized along the deployment of each new connection [as op-
posed to being paid in full when the ([a]+1)st connection is
deployed]. If we let f(n;) be the cost portion to be incurred
when the number of connections is n; and for simplicity
disregard the fact that connections necessarily occur in dis-
crete numbers, then it follows that

az+w
 fndn B @
o
:(az+w)logaﬁ _ (a,z)logaﬁ. (5)
Consequently,
Flng) o niosaBe), (6)

Setting @=p leads f(n;) to be constant with respect to ny;
setting a# B leads f(n;) to vary either directly (a<f) or
inversely (a> B) with n,.

We then have

C:li =C+D[(n)"+ (n;)y] (7)

for some constant D and y=log,(B/ ). An edge is added to
G' between nodes i and j to yield G"*" if gj;> c};. If not, then
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FIG. 1. (Color online) Average node-degree distributions for
n=512,1024, D=0.1, and y=0.9. The degree distribution ap-
proaches a power law proportional to k~". For values of D and vy as
given, 7 may be parametrized as either 7=2+0.007C+0.000 02C?,
in the region k<100, or 7=3.4-0.003C-0.000 02C2, for k>100.

G"*'=G'. By the nature of Egs. (3) and (7), this decision
involves only the distance between i and j in G, in addition
to other quantities that depend exclusively on the surround-
ings of i and j within a constant radius in G'. It is then
essentially a local decision.

III. COMPUTATIONAL RESULTS

We have conducted computer simulations for selected
combinations of the C, D, and vy parameters. Each simulation
starts with a randomly chosen instance of G° and proceeds
through r=3000n. A G instance is generated on the n ini-
tially isolated nodes by progressively selecting node pairs at
random and directly interconnecting them if no path exists
between them; because G° is a tree, it is necessary and suf-
ficient that n—1 such interconnections be performed.

At each step of a simulation the distance d?i must be cal-
culated on G’. While on a real computer network such a
distance (or an upper bound thereof) is readily available from
the network’s routing structure (as noted earlier), calculating
dﬁj seems to be asymptotically no easier than finding the
distances between a given node and all others in G'. For
connected graphs, this requires O(m’) time [26], where we
use m' to denote the number of edges of G. It is therefore a
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FIG. 2. (Color online) Average node-degree distributions for
n=512,1024, C=100, and vy=0.9. The values of 7 may be
approximated by either 7=2.98-0.85D+0.37D?, for k< 100,
or 7=2.57+3.37D-0.74D?, in the region k> 100.

time-consuming procedure, and progressively more so as the
simulation is carried on and the graph tends to become
denser. The consequence of this for the present study is that
the value of n is somewhat limited, and so is the number of
independent G instances that can be used for statistical sig-
nificance.

Our results are shown in Figs. 1-3, where, respectively,
the value of each of C, D, and 7 is varied while the other
two parameters remain fixed at a set of common values
(C=100, D=0.1, and y=0.9). For each combination of the
three parameters we show results for two values of n, in each
case as averages over 500 independent simulations. As the
figures indicate, our model for network growth does indeed
give rise to a scale-free pattern of behavior in which a vast
majority of the nodes has low degrees while a few high-
degree nodes are nonetheless present.

IV. DISCUSSION

Except for the highest y values in our simulations
(y=1.5,1.9; see Fig. 3), the node-degree distribution that
results from our model seems to settle at two distinct power-
law regimes, one for node degrees below roughly 100, the
other for those above this threshold. The reason why this
happens depends on the process whereby nodes acquire ever
higher degrees, as we discuss next.
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FIG. 3. (Color online) Average node-degree distributions for
n=512,1024, C=100, and D=0.1. In this case, the values of
T are given by either 7'=3+O.17—O.25y2, for k<100, or
7=2.3+0.067y-0.67?, for k> 100.

In our model, nodes acquire higher degrees one unit at a
time when two of them become directly connected to each
other as a result of comparing the gain in (3) to the cost in
(7). As degrees become larger and the network denser, it also
happens that distances between node pairs become shorter.
The node sets whose cardinalities appear in (3) tend, there-
fore, to become smaller. Together, these trends make it pro-
gressively harder for gains to surpass costs and for degrees to
continue increasing. However, a few high-degree nodes do
appear and the dynamics of network growth does occasion-
ally consider joining two of them together. Because they
have high degrees, it sometimes happens that the node-set
cardinalities in (3) become once again relatively non-
negligible and a few high-degree node pairs do indeed be-
come interconnected.

We illustrate this process in Fig. 4, where a sequence of
snapshots of the evolving node-degree distribution is shown
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FIG. 4. Average node-degree distributions for n=1024, C=100,
D=0.1, and y=0.9 (cf. Figure 3) at selected values of ¢. The posi-
tion of the peak in the distributions at k=150 scales with the num-
ber of nodes proportionally to n%3+006,

for the y=0.9 case of Fig. 3 with n=1024. Clearly, all nodes
start out with relatively low degrees at =0, but many mi-
grate toward higher degrees with the passage of time. At
t=50 a power law is already delineated, but the migrations
continue and lead some of the nodes, particularly those of
relatively high degrees, to have their degrees increased even
further. In fact, nodes whose degrees surpass the parameter-
dependent threshold mentioned above migrate quickly, leav-
ing the degrees in the region from which they departed much
less represented. This may be repeated over and over again,
thus causing the oscillatory pattern we observe near the
threshold.

Our results indicate that, as the node migrations toward
higher degrees occur, a new power-law regime for the high-
est degrees is inaugurated. In this case, what we witness may
be interpreted as the emergence of some sort of hierarchical
organization within the network, not unlike what happens
with the Internet [25], which is inherently organized in just
such a way. That a single power-law regime should be re-
ported in topology measurements like those of [5] may be
due exclusively to the fact that they are constrained to within
one single level of the hierarchy.
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